
Journal of Statistical Physics, Vol. 38, Nos. 1/2, 1985 

"Statistical" Symmetry with Applications 
to Phase Transitions I 

Joseph L. Birman 2 and H.-R. Trebin 3 

Received July 16, 1984 

Hermann proposed that mesomorphic media should be classified by assigning 
certain "statistical symmetry groups" to each possible partially ordered array. 
Two translational groups introduced were called superordinate and subordinate. 
We find that the average density in such a partially ordered medium has the 
superordinate symmetry 4 ,  while the pair correlation function has the subor- 
dinate symmetry ~ .  A complete listing is made of all compatible combinations 
of ~ and ~ in two and three dimensions. This leads to more possible 
symmetries than Hermann obtained, e.g., also to nonstoichiometric crystals. The 
order parameter space for the systems is found to be the quotient space ~ / ~ .  
In most cases it is identical to the order parameter space of low-dimensional X Y  
spin systems. The Landau free energy is expanded as functional of the two- 
particle correlation function K; the translation group is found to be ~ • ~ .  A 
Landau mean-field theory can then be carried out by expanding the system free 
energy into a series of invariants of the active irreducible representations of K 
and mapping the free energy onto that for an X Y  planar spin system. We predict 
novel critical behavior for transitions between mesomorphic phases and "go no- 
go" selection rules for continuous transitions. We give the structure factors for 
X-ray scattering so changes in all such phase transitions are observable. The 
statistical symmetry groups, which describe point and translational symmetries 
of the mesophases, are classified. Proposals are made to include quasi-long- 
range or topological order in the classification scheme. 
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1. INTRODUCTION 

"Statistical symmetry" seems to be a contradiction in terms. In condensed 
matter physics symmetry is the set of isometrics of a completely ordered 
system such as a crystal. These isometrics map corresponding points onto 
one another. A statistical array is disordered. A probability distribution of 
site occupancy is required to specify the array. No symmetry, apart from 
trivial (identity operation) seems present in the disordered system. 

Several attempts have been made to ascribe symmetry to liquid crystal 
and other disordered systems. One of the more innovative and imaginative 
attempts is due to the mathematical crystallographer Carl Hermann. In the 
work reported here we have combined Hermann's ideas with simple physical 
models, such as point particle and two-component X Y  spin. As a result, 
considerable progress was achieved in deepening and extending his ideas for 
concrete physical systems. Among the new features emerging is the 
possibility of describing phase transitions between disordered systems in a 
novel manner. 

Professor Ilya Mikhaelovich Lifshitz had a continuing interest in the 
physics of phase transitions and disordered systems. We dedicate this paper 
to the memory of this esteemed scientist: it was a privilege to have known 
him. 

The history of our subject goes back at least to 1922, when George 
FriedeP ~) coined the term "mesomorphous states" (Les ~tats mesomorphes) 
to describe media, which have an intermediate order between that of an 
amorphous solid (or isotropic fluid) and that of an ideal crystal. With regard 
to symmetry, the amorphous solid is a continuum, invariant under all 
operations of the Euclidean group E(3) (rigid arbitrary translations and 
rotations, and reflections), whereas the crystal is specified by a discrete space 
group. The 230 space groups were enumerated by Schoenflies ~2) in 1891. A 
classification of the mesomorphous states by symmetry groups was first 
attempted in the 1920s and 1930s with the advent of systematic research on 
liquid crystals. It appeared natural to associate a mesomorphous phase with 
each subgroup of E(3). Schubnikov, ~3) and later Beckers et al. C4~ determined 
the continuous subgroups of E(3) (the "continua"). The mixed continuous 
and discrete subgroups (the "semicontinua") were listed by Schubnikov tS~ 
and Goshen et al., (6), Kastler et al., (7) Kl~man and Michel, (8) and Michel. (9) 
The possible symmetries of anisotropic fluids and their phase transitions 
were investigated by Boccara (1~ within the Landau formalism. Janner and 
Janssen (1~) proposed a high-dimensional crystallography of incommensurate 
solids. Another, nonsymmetry approach to the classification of mesophases 
was made by Hosemann (~2) with the concept of paracrystals. Starting from a 
regular lattice, Hosemann introduced spatial deviations of the lattice points 
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from equilibrium. Defining sets of a pr ior i  fixed anisotropic mean square 
deviations, he arrived at a variety of perturbed lattices, which were identified 
with mesophases. 

A different classification scheme was established in 1931 by Carl 
Hermann. (13) He arranged the mesophases, using two groups of "statistical 
translations," namely, a superordinate group ("0bergeordnete Gruppe"), and 
a subordinate group ("Untergeordnete Gruppe"). Despite considerable 
interest in Hermann's ideas through the years, there has been almost no 
development of the theory along lines suggested by his proposal. 

We have analyzed Hermann's work and identified the physical obser- 
vables addressed by his groups. These are the average density and the pair 
correlation function. The symmetry properties of both are combined in the 
two-particle (or density~tensity) correlation function. It then develops that in 
a point particle model of the system the superordinate group characterizes 
the translational type of the average density, i.e., discriminating between 
fluids, layer systems, rod lattices, and crystals. The subordinate group 
denotes the symmetry of substructures (chains or nets), distributed regularly 
or randomly in space. As has already been mentioned by Landau (14) and 
reiterated by Goshen et al., (6) the many-particle correlation functions alone 
determine the symmetry of anisotropic fluids, for which the average density 
is isotropic and homogeneous. Hence we conclude: in the Hermann 
classification, the two-particle correlation function is central. In this paper 
we only consider the translational symmetry aspects of this correlation 
function. 

In Section 2, we briefly outline Hermann's procedure. In Section 3, the 
translation symmetry of the two-particle correlation function K(r 1,r2) is 
investigated. Two translation groups, ~ and ~2, are defined and identified 
with Hermann's super- and subordinate group. The direct product ~ • 
yields the total translation group of K(r~, r2). By listing the compatible 
combinations of both groups, all of Hermann's mesophases are retrieved and 
additional ones are discovered. We then look for possible phase transitions 
between the mesophases. In Section 4, most of them are mapped to low- 
dimensional systems of plane rotators, the order parameter spaces being 
given by the factor groups ~ / ~ .  This allows qualitative formulation of 
phase sequences. Having recognized the two-particle correlation function as 
a central quantity in the description of mesomorphous phases, we use it as 
an order parameter in a phenomenological Landau theory of phase tran- 
sitions (Section 5). In Section6, remarks are made about the overall 
("statistical") symmetry of mesophases, including point symmetry 
operations. 

Mesomorphous phases, even of identical symmetry, can exist as ergodic 
or nonergodic states (compare fluids and amorphous solids). We do not 
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discuss the question posed by Zocher (15) or by Kastler et al. (7) of whether 
certain symmetry classes can be realized only by nonergodic (completely or 
partially disordered) systems not reaching thermal equilibrium. We will 
comment on the classification of strongly fluctuating systems, which a priori 
do not posses long-range order, and we will touch on the notion of 
"topological order" in Section 7. 

2. H E R M A N N ' S  CLASSIFICATION SCHEME 

In his analysis of homogeneous mesomorphous media, Hermann C13) 
identified certain structural units: volume elements of identical molecular 
arrangement (within certain statistical limits). The centers of any two struc- 
tural units are connected by a vector. The resulting set of vectors is termed 
"statistical translations of the first kind." This set is processed in two steps. 
It is completed by addition and subtraction of the vectors to obtain a group, 
the so-called superordinate group. A subset of that set is extracted, which 
itself forms a group, whose translations leave the individual system invariant. 
This second group is the subordinate group. Both superordinate and subor- 
dinate group are needed to uniquely label a mesomorphous system. Whereas 
the subordinate group is discrete and defined in less than or equal to three 
directions, the superordinate group is continuous (more exactly: dense) along 
certain spatial directions, discrete along the complementary directions. Those 
directions, along which the subordinate group has translations, are labeled D 
("direct translations"), those along which the superordinate group is discrete, 
are labeled R ("reciprocal translations"), and the remaining directions are 
labeled S ("statistical translations"). From the combinations of the three 
symbols, Hermann derived 20 translational types, nine of which he excluded 
as physically unrealistic or geometrically forbidden. In Fig. 1, the charac- 
teristic sets and groups are depicted for the following model systems: an 
amorphous solid (SS), a crystal [(RD), (RD)], an ensemble of parallel 
chains displaced vertically and laterally at random (SD), and a crystal 
whose vertical planes have shifted randomly (RD). If, for example, several 
structures SSD with different chain directions are superposed, the symbol D 
is replaced by Pa ("pseudotranslations"), where d denotes the degree of 
freedom of the chain directions: if d = 0, the set of directions is discrete, if 
d = 1, it is a one-dimensional manifold, if d ~- 2, a solid angle or the entire 
sphere. By including the pseudotranslations, Hermann obtained 11 additional 
translational types of mesophases. 

Bernal and Fankuchen "6) classified plant viruses, Mabis (17) several 
organic compounds, by Hermann's method. In the articles of Mabis t~7) or 
Hosemann and Mtiller (tS) illustrated examples of the translational types are 
presented. However from Hermann's description of the translational groups, 
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Point-particle model 

Stotisticol translations 
of the first kind 

Superordinote group 

Subordinote group 

SS (RDI(RD) 

s t  

NN 
�9 �9 1 |  

SD RD 

Fig. 1. Four models of two-dimensional Hermann systems; SS: amorphous solid; 
(RD)(RD): crystal; SD: parallel chains of atoms, displaced vertically and horizontally at 
random; RD: crystal, whose vertical planes are displaced at random. In the first row, the 
point-particle model for each system is shown, in the following rows the statistical translations 
of the first kind, the superordinate and the subordinate groups as defined by Hermann. t13> 

it is not evident what physical quantity is described by these groups. We 
shall show the connection between the two-particle correlation function, for 
point particle systems, and the translational symmetry of  super- and subor- 
dinate groups. 

3. TRANSLATION SYMMETRY OF THE TWO-PARTICLE 
CORRELATION FUNCTION 

3.1. Group Theoretical Considerations 

In this section we analyze the translation symmetry of  various 
correlation functions in a point-particle model. 

For  a system of N point particles of  mass 1, which are placed at points 
Sl, s2,..., sN, the density is 

N 

p(r) = ~ f i ( r -  s;) (1) 
i = 1  

The mean density, 

/7(r) = @(r))= ( ~  ~(r -- s,)) 
i = 1  

(2) 
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Because of property 2, 
homomorphism 

is obtained by configurational or temporal average. The two-particle 
correlation function is defined as 

K(rl ,r2) = (p(r l)P(r2))= (~ ,  c5(rl-si)  3 ( r 2 -  sj) ) (3) 

It yields the probability for two particles to be found: one at r I and one at r z, 
respectively. Now operators T(ta,t2) are introduced, which translate K 
separately in the two arguments: 

r ( t  1 , t2 )  K ( r  1 , r2 )  = K ( r  I - t ~ ,  r 2 - t2 )  ( 4 )  

The composition law is 

T(tl, t2) T(t;, t~) = T(t I + t~, t 2 + t~) (5) 

We investigate the structure of the translational invariance group U of 
K. First note the permutation symmetry 

K(rl ,  r2) = K(r2, rl) 

From this follows: 

1. If T(t~, t2) ~ g-, then also T(t2, t 0 E g-. 

2. If T(0, t) ~ g ,  then also T(t, 0) and T(t, t) ~ ~ ,  

Two subgroups of ~- are defined: the "diagonal," 

g] -~ {T(t, t)} 

which translates both arguments of K identically and represents the usual 
symmetry under rigid motions, and the "row," 

G -- {r(0, t)} 

can be regarded as subgroup of ~ .  By the 

r ( t l ,  t 2 )  ~ r ( o ,  t 2 - -  t l )  

each element of g- is projected on one of ~2. It is easily proved that zc is a 
surjective (onto) homomorphism. Since rc eliminates the parallel motion of 
both arguments, it has the property 

3. Ker 7r = ~ .  (This leads to the following isomorphism): 

4. ~ = g~/~.  
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A change to the variables F = r 2 - r ~ ,  r = r~ is now useful. For brevity 
we use the symbol K also for the correlation function in the new coordinates: 
K(r, F) = K(r~, r2). A translation T(t2, tl) acts on the new coordinates like 

r ( t l ,  t : )  K ( r ,  ~) = K ( r  - ta ,  ~ - (t 2 - t , ) )  

S(t~, t 2 - tl) K(r, ~) 

In the notation 
T(tl, t2) --: S(t l ,  t2 - tl) 

s(u ,  v) = r(n, u + v) 

the above-defined groups assume the form 

= {S(u, 0)} (6) 

= {s (o ,  v ) t  

From this one recognizes immediately that the total translation group of K is 
the direct product 

In the following chapter we will study the four basic translational types S, D, 
R, (RD), using simple prototype models in one dimension. From these we 
will conclude, that Hermann's superordinate group is to be interpreted as ~ ,  
the subordinate group as ~ .  

3.1. Basic Translational Types in One Dimension 

In Table I we present the probability density p, average mass density ~, 
two-particle correlation function K ( x  1, x2) = K(x ,  2), x = x l ,  2 = x 2 - x~, 
and the pair correlation function 

1 f 

G(2) = - ~  J dx  K(x ,  2)  (7) 

for four simple one-dimensional model systems, each consisting of N point 
particles. These represent an amorphous solid (S), a fluid of interpenetrating 
chains (D), a nonstoichiometric crystal (R), and a regular crystal [(RD)]. 

Also the groups ~ and ~ are listed; these were determined from the 
form of K. From these examples the following conclusions can be verified: 

1. The group ~ always is discrete. Whenever the correlations are 
random along one direction (as for systems S and R), the two-particle 
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correlation function contains the peaked self-correlation term ~(s and hence 
is of point symmetry only. 

2. Systems can be constructed [like D, (RD)], whose two-particle 
correlation function has discrete translational symmetry. This fact disproves 
Landau's statement, v4) that K can only have point symmetry. 

3. In homogeneous systems like S and D, ff is constant, K(x, 2) does 
not depend on x, and G ( 2 ) =  K(x, 2)/~. Apparently ~ is then also the tran- 
slation symmetry group of/Y, and U 2 that of G. But this fact proves true also 
for inhomogeneous systems like R or (RD). 4 Therefore the two-particle 
correlation function combines the symmetry properties of both/Y and G. 

Note that for an amorphous solid the combination ~ = R  (continuous 
translational symmetry) and U 2 = 1 (no symmetry) expresses the two 
contradictary properties of complete homogeneity of the ensemble average, 
but absence of translational symmetry for the individual system. 

The preceding characteristic features of the one-dimensional systems 
can also be found in the four two-dimensional systems of Fig. 1. From all the 
model systems it became evident that ~ is the superordinate, and ~ the 
subordinate translation group in the sense of Hermann, where ~ refers to ~, 
and U 2 to G. 

3.3. The Translational Types of Mesomorphous Phases 

In Tables II and III  all translational types of mesomorphous media are 
listed for two and three dimensions. The enumeration is based on the 
following three conditions: 

1. Since in our classification only those systems are included whose 
ensemble average has a translational symmetry in all spatial directions, U~ is 
nontrivial along all directions. Hence incommensurate systems cannot be 
classified by this methodfl 

2. ~z is discrete. 

3. ~ is a subgroup of ~ .  

4 Since/7 and G are derived from K by the relations 

/7(r) = N f  d3F K(r, ?); G(f) = (1/N)f d-~r K(r, ~) 

the statement is more exactly: ~ and ~ are subgroups of the translation groups g-~ and g-~ 
of/7 and G, respectively. But the translational type (trivial, discrete, continuous) of ~ and g-2 
is always the same as that of the primed groups, and inequalities g-1 • g~, ~ ~ g'; hold 
only in pathological cases, 

s In Hermann's original procedure (Section lI), a crystal is of type S along each incommen- 
surably modulated direction, since the completion of two incommensurate vectors to a group 
is dense in the real numbers. 
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The second condition follows by observing the self-correlation peak 
along directions of random particle distribution, the third condition from the 
permutation symmetry K(r 1 , r/) = K(r 2, rl). 

In Tables II and III we also present the translational symmetry of the 
structure factor - 

N 
S(q) - (2n) a f da~ e iq" ~G(~) (8) 

in reciprocal space. Whenever g] is isomorphic to the group of integers Z 
(discrete and periodic), then the structure factor is also periodic along the 
same (respectively, dual) direction. Whenever ~ is isomorphic to the group 
R of real numbers, then S(q) only has point symmetry. We denote system A 
as reciprocal to system B, if the structure factor of A has the translational 
symmetry of the pair correlation function of B. 

From the 20 systems in three dimensions, Hermann allowed nine as 
mesophases (marked by an asterisk). He stated, that due to geometrical 
restriction the phases DDD, DD(RD), D(RD)(RD), RRR, RR(RD), 
R(RD)(RD), are equivalent to (RD)(RD)(RD). The first three of these 
systems, indeed, are without physical significance, since they represent fluids 
of interpenetrating crystals. RRR, however, is the classification for 
nonstoichiometric crystals, 6 RR(RD) for crystals of missing chains, 
(RD)(RD)R for crystals of missing planes or commensurably intercalated 
solids. The phases RRS, DDS, SR(RD), SD(RD), and S(RD)(RD) were 
excluded as too inhomogeneous. But some of these have been found in 
nature, for examples RRS, which is the translational type for discotic liquid 
crystals.(19) 

The notation of Tables II and III is simplified in the following respects: 
first, the coordinate systems used must not necessarily be orthonormal. 
Secondly, for systems like SS(RD), the primitive translation vector a of 
may not necessarily stand perpendicular to the planes of the mass density 
wave/7, but is only required to have a nonzero component along the normal. 
Given/7, many compatible pair correlation functions can be constructed, for 
example, by rotating a about the normal of the plane. The Hermann systems 
containing pseudotranslations are superpositions of systems, which are 
degenerate in this respect, and their X-ray patterns (structure factors ) are 
superpositions like a powder spectrum. To limit the abundant variety of 
possible combinations, restrictions must be imposed, like the homogeneity 

6 It is interesting to note, that in a comment to Hermann's paper [Z. Kristallogr. 79:338 
(1931)] P. P. Ewald asked the question of how to classify nonstoichiometric crystals 
("durchl6cherte Gitter"). 
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conditions in Hermann's original paper. These conditions, and not symmetry 
principles, determine the classification by pseudotranslations, and therefore 
we do not pursue it further. 

4. MAPPING OF HERMANN SYSTEMS TO PLANE 
ROTATOR MODELS 

Most Hermann systems are equivalent to low-dimensional fluids or 
crystals consisting of two-dimensional unit spins. Let us take, for example, as 
representative for system SD the ensemble of chains of Fig. 1. If a straight 
line is drawn transverse to the chains, each chain is characterized by two 
coordinates: the position x ~ R x where it cuts the line, and the distance d of 
the first atom above the line. But d is defined only modulo the periodicity 
length of the chain, and therefore must be replaced by a phase factor 
expiCE U(1), where r The order parameter space is equal to 
R x • U(1)y (the index y expresses the fact that it is the translational degree 
of freedom along the y direction, which has been replaced by the phase 
factor). The system SD thus has been mapped to a one-dimensional fluid of 
unit spins (XY  spins, plane rotators). 

Formally, an order parameter space is established as a coset space 
G/H, where G is an unbroken symmetry group, acting on the order 
parameter, and H the isotropy or fix-point group of the order parameter. 
This identification is well known from the topological theory of 
defects. (9'2~ For the Hermann systems, H is equal to ~ ,  which is the fix- 
point group of a subsystem, and G is equal to 4 .  In the above example the 
order parameter space R x • U(1)y results from the factorization ~ / ~ =  
Rx X R f f l x  • Zy = R x • (RffZy), since the real numbers modulo the integers 
are isomorphic to U(1), the unit circle in the complex plane. All the factor 
spaces ~ / U  z are listed in Tables II and III together with a short charac- 
terization. System DDR, for example, corresponds to a one-dimensional 
crystal of double spins (U(1)x_X U(1)y), or tori. 

If pseudotranslations are present, the order parameter space is enlarged 
by a degree of freedom. For system SP~ it is {RxX U(1)y} X S 1, where 
0 E S 1 is the angle of the chain direction, measured f rom a reference line. 

In the language of spins, a transition SD ~ R D  corresponds to an 
ordering of the paramagnetic spin fluid to a paramagnetic crystal (ordering 
of positions). A transition SD-~ S(RD) corresponds to an ordering of the 
spin angles, i.e., to a transition from a paramagnetic to a ferromagnetic fluid. 
Possible sequences of phase transitions are drawn in Fig. 2. The analogy 
should go beyond an isomorphism of order parameter spaces. The 
interaction potential for two chains can be assumed to consist of a distance- 
dependent hard core interaction V ( x 2 - x l ) ,  and an angle-dependent 
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I ss .'-". I 
melting o f /  ~ ordering into 

: ~" = : 1 in-plane4meltincj 
I I o, .oo, i- >1 

position/ /ass of ~ orderincj to o r d e r y  

[ \ / 1  I I "x'l RD ;1 f! S(RD) T I t  ! It RR : x, ,  �9 

spin~x~ position ~ ~ position ordering; �9 . ~ n g  chains 

ordering .~order,~/" " 

Fig. 2. Possible sequence of phase transitions for two-dimensional Hermann systems. For 
part of the systems the corresponding plane-rotator model is drawn. The arrows indicate the 
direction of symmetry breaking. Whenever two arrows are shown, one of the translational 
groups is broken, the other one is raised. 

Heisenberg exchange term, proportional t o  c o s ( ~ 2 - - ~ 1  ). If such strongly 
anisotropic mesophases could be prepared in thermodynamic equilibrium, 
they would be representatives for low-dimensional X Y  models. The tran- 
sitions between these systems and the thermodynamic variables (correlation 
lengths, critical exponents) could easily be monitored, since each phase 
carries a specific X-ray pattern. Systems not reaching thermodynamic 
equilibrium represent spin glasses. However, the spin degree of freedom 
might be quenched here directly, possibly owing to an inertness of the 
chains, whereas in real spin glasses it is positional disorder that induces spin 
disorder. 

The arrows in Fig. 2 point along the direction of symmetry breaking. 
Note that in the transition S S  --* SD (chain crystallization) the symmetry is 
raised. ~ does not change, but ~ is increased from the trivial group to Z. In 
the transition R D - *  (RD)(RD),  the superordinate group ~ = Z x •  Ry is 
broken to Z x • Zy, but the subordinate group U 2 = 1 x • Zy is increased to 
Z x • Zy. The Hermann systems provide many unusual possibilities for phase 
transitions. We now will investigate these by Landau theory. 
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5. A LANDAU THEORY FOR PHASE TRANSITIONS 
BETWEEN MESOPHASES 

Since the two-particle correlation function K proved central in the 
description of mesophases, we will use it in place of the density function in a 
phenomenologieal Landau theory of phase transitions. But for this purpose 
we first have to study the irreducible representations of the symmetry group 
of K(rl~ r2). 

5.1. irreducible Representations of the Symmetry Group of K 

We still leave aside the rotational symmetry of the two-particle 
correlation function. But we cannot ignore the invariance under the 
permutation operation PK(rl,  r2)=K(r2,  rl) , which leads to the subgroup 
relation ~2 c ~ .  The group that has to be considered, is generated by the 
elements of g" = ~ • ~2 and 3 = { 1, P}, and is denoted ( 9 ,  ~).  

P commutes with the elements of ~ ,  but not with the elements of ~ .  
Hence ( 9 ,  ~ )  is nonabelian, but g- is an Abelian subgroup of ( 9 ,  g-). 
Irreducible representations of ( ~ ,  g-) can therefore be constructed as is done 
for space groups. (22) 0ne first looks for the irreducible representations of g-. 
Since in coordinates (r, ~) the subgroups ~ and ~ act separately on the two 
arguments, the irreducible representations of g are direct products of those 
of ~ and ~ :  

fk~(r, ~) = e ,k  .,+ r,. ?)f(kl,(r) f~2)(~) (9) 

Here the "periodic" function 

Ukk.(r ' f) = f~k*)(r) f(2)(~) (10) 

is invariant under the operations of g-. Application of P turns the pair (r, ?) 
of spatial vectors into (r + ?,-i ' ) ,  and the pair (k, k) of wave vectors into 
(k ,  k - ~ ) :  

pfk~(r ' ~) = e,i k.,+ (k- f,). ~1 f(k,)(r + ~) f~2)(_~) (1 1) 

Owing tO the subgroup relation ~2 c ~ ,  ukf(r + ~,--~) remains invariant 
under the operations of g-. The next steps are (i) determine the group 
3kr , c 3 of the wavevector; (ii) determine an irreducible representation of 
3kr  ,, say, Ol(r, ~); and (iii) attach 02(r, r)-----P~l(r, ?). 

There are two possibilities: 

1. 3k~= 1. Then (k, k) is not equivalent to (equal up to a reciprocal 
lattice vector) to ( k , k - k ) .  The basis functions ~ and ~2 transform 
differently under the operations of ~2, and the representations are always 
two dimensional. 
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2. 3 k ~ =  3 .  Then k = 2/~+ H, where H is a vector reciprocal to the 
translations of ~ .  The representations are two and one dimensional. For 
one-dimensional representations the invariant function ukf,(r,f ) must be 
composed of plane waves of the form 

e x p { i ( Q . r + Q . r ) t ,  with Q = 2 0 + H  

Here Q is a vector reciprocal to the translations of U1; 0 and H are 
reciprocal to the translations of ~ .  

5.2. Landau Expansion of the Thermodynamic Potential 

We modify Landau's theory (~4) by expanding the thermodynamic 
potential r in functionals of the two-particle correlation function. K is 
separated into components K o + 6K, where K 0 is the correlation function of 
the high-symmetry phase. The term ~K is expanded into basis functions of 
the irreducible representations of the higher symmetry group. In investigating 
lines of phase transitions, only one irreducible representation is needed. If we 
are dealing with translational symmetry only, the expansion is simple: denote 
by ~ the first basis function of an irreducible representation. Then 6K must 
be symmetric with respect to P, and it must bfi, real. Therefore ~K is of the 
form 

6K=�89 +P~0 +~0" + (P~0)* } (12) 

which contains only a single real order parameter e. If we assume 0 to have 
the form of Eq. (9) and uk~ Eq. (10) to be real, then we obtain 

6K = e{cos(k �9 r + k �9 ~) u~;(r, ~) 

+ cos[k �9 r + (k - k ) -  ~] Ukf~(r + ~, --~)} (13) 

Novel features of phase transitions become apparent already when 
looking at transitions between the basic one-dimensional translational types 
S, D, R, and (RD).  The transitions S ~ R,  S ~ (RD)  can be treated as in 
conventional Landau theory, so we concentrate on S ~  D and D ~ (RD).  ~ 

The transition R -4 (RD)  is similar to S --, D. D -4 R can be studied as two- 
step transition D -4 S -4 R. 

7 The one-dimensional system D of interpenetrating chains is as unphysical as system DDD of 
interpenetrating crystals. But when going to higher dimensions, for example to system SD, 
the chains are pulled apart along the additional dimension. 
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For the transition D ~ (RD), the symmetric function u is independent of  
x = x 1, since D is homogeneous.  If  we take u as real and even in 2, the 
expansion of  6/(  assumes the form 

6K=c{cos(kx + fcx') + cos[kx + ( k - k ) 2 J }  u(2) (14) 

If  the pair correlation is to retain its periodicity in the transition, the 
group of  the wave vector must be 3 (case2  of  Section 5.1). Hence 
k = 2k + K, and k must be commensurate  with the reciprocal lattice vectors 
belonging to ~ .  If  in addition the pair correlation does not change its 
symmetry (rigid chains), k must be a reciprocal lattice vector. Let us assume 

= O, so that 

~K = c{cos kx + cos k(x + x')} u(2) (15) 

Now k can only take the discrete values of  a reciprocal lattice vector to ~ .  
All the allowed irreducible representations are labeled by discrete indices. 
There are no Lifshitz terms and no third-order invariants. The Landau 
expansion is of  the same form as for a ferromagnetic transition: 

= r + A(K) ce + B(K) cr (16)  

allowing a second-order phase transition. For  / ( =  2]r/a one obtains a 
situation as in Fig. a (along the y direction a translational type S is 
assumed), f o r /~  = 3 �9 2~/a one obtains a situation as in Fig. 3b. 

The transition S--* D is remarkable, because D is the high-symmetry 
phase (Section4).  Instead of  dealing with symmetry restoration, (23) we 
consider the reverse process D ~ S. Both phases are homogeneous.  Therefore 
k = 0, and u(x, x') does not depend on x. With u(2) real and even we obtain 

6K = 2c cos/~2u (2) 

o 

K = 2" r r lo  

- -  , - - I - - - i 1 - r  

�9 - 0 - -  - - m - O  - - ~ - -  

_-i g 

K = 3 . 2 - r r / o  

Fig. 3. Result of the phase transition SD-,S(RD) according to Landau theory for 
irreducible representations with wave vector k = K = 2~r/a and 3 �9 2~z/a. 
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For the chains to loose periodicity, /~ must be incommensurate with the 
reciprocal lattice vectors of the subordinate group. Melting of chains can 
occur only via a transition to incommensurability. 

Transitions of two- and three-dimensional systems can be found by 
combining the transitions of the elementary one-dimensional types. Here 
symmetry breaking and symmetry restoration can take place simultaneously, 
as for example in the transition RD ~ (RD)(RD). In this case, if the chains 
are rigid, the system is mapped to a plane rotator model, and the process 
corresponds to a ferromagnetic phase transition of a one-dimensional crystal. 
In other cases, the transition can be performed in two steps. 

6. THE STATISTICAL S Y M M E T R I E S  

The statistical symmetries of a mesomorphous point particle 
system--as defined by Hermann--are the symmetries in the usual sense: 
translations, rotation, reflections, etc., which leave the configurational or 
temporal average invariant. With regard to this average, we have to be more 
specific. The translational symmetry is certainly that of the average density 
/7. However, the point symmetry of/~ can be broken by the shape of the pair 
correlation function G, as demonstrated by the homogeneous system SSD. It 
is imaginable that the point symmetry of G(r) is again broken by higher 
correlations, for example by the triplet correlation function 

G~2'(r,, r:) = ~-  d3r'~o(r')p(r ' + r ,)p(r '  + r2) ) (17) 

The point where this sequence of symmetry breaking ends determines 
the rotational part of the statistical symmetry. 

Taking into account only /~ and G, we can classify the statistical 
symmetry groups along the lines of Goshen et al. (6) by enumerating the 
subgroups of the Euclidean group E(3). A coarse classification of these 
groups is given by the translational type of/7, i.e., by ~ .  The subgroups of 
E(3) compatible with g-1 are then restricted by the type of U 2. The different 
three-dimensional Hermann systems, with the exception of DDD, DD(RD), 
and D(RD)(RD), can be associated with the following statistical symmetry 
groups 5"~: 

(i) If ~-1 = Rx • Ry • R~, then Y =- g- A ~ ,  where A denotes the 
semidirect product, and ~ is a subgroup of 0(3). 

(ii) If ~ = R  x •  • Z z, then 5 ~ is any one-dimensional space 
group (listed in Ref. 6). 

(iii) If g-1 = Zx • Zy • R z, then Y is any of the 80 two-dimensional 
space groups (also Ref. 6). 
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(iv) If ~ = Z • Zy • Z z, then 5 ~ is any of the 230 three-dimensional 
space groups. 

Given Y ,  the following restrictions are imposed by the subordinate 
groups: 

(a) If U 2 = 1, there is no restriction. 

(b) If ~ = Zx, then only subgroups of Y ~ [(R x X Ry X Rz)/~ D~h] 
are allowed. The superscript in D~h denotes the main rotation axis. 

(c) If ~ - - Z  x X Zy, then only crystallographic point groups are 
allowed, i.e., subgroups of J ~ [(Rx X Ry X Rz) A D~h ] n = 1, 2, 3, 4, 6. 

Hermann also introduced the notion of a "semiexact symmetry group." 
This is a subgroup of Y ,  whose elements leave the individual substructures 
(the local order) invariant. A uniaxial nematic liquid crystal of symmetry 
D~h, for example, could be composed of biaxial molecules, whose main axes 
are aligned, but whose biaxial directors are distributed at random. The 
semiexact symmetry group is D2h. Correlation functions for the local order 
and their symmetries require methods taken from the statistical geometry of 
liquids and are beyond the scope of this paper. 

8. F L U C T U A T I O N S  

In low-dimensional systems, like two-dimensional crystals, or in media 
of strongly anisotropic correlations, like the smectic liquid crystals, true 
long-range order is absent. (24~ The isomorphism between Hermann systems 
and low-dimensional X Y  models, and the anisotropic form of the two-particle 
correlation functions implies, that in most of the mesophases the order is 
destroyed by fluctuations. So does it make sense to classify the 
mesomorphous media by symmetry groups? 

Order parameter fluctuations require the existence of an order 
parameter itself, i.e., an underlying long-range order which is disturbed. This 
order is classified by the statistical symmetries. But the statistical symmetry 
group H, together with an unbroken symmetry group G, also determines the 
type of fluctuations occurring. If G is the invariance group of the bulk free 
energy, that part of the order parameter space, which is affected by the low- 
energy fluctuations, corresponds to the coset space G/H (the same principle 
was applied in mapping the Hermann systems to plane rotator models in 
Section 4). We illustrate this statement by several examples. 

In a two-dimensional ferromagnet, the bulk energy F =  a M 2 +  bM 4 is 
invariant under rotations of the magnetization vector M: G = SO(2). The fix- 
point group of the ordered phase is trivial: H = 1. The coset space G/H = 
SO(2) is equal to the set of directions {~10~<2rc}= g(1) of M. The 

822/3s/1 2-26 
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strongest fluctuations are those in 0, and not those in the length I M I. The 
correlation function characterizing the low-energy fluctuations is 
(exp i{r  since the phase factor exp ir serves as coordinate in 
U(1). The same correlation function is applicable to system S S ( R D ) ,  where 

= 2nd/a (Section 4). 
In the crystallization of a two-dimensional liquid to the hexatic 

phase ~25) the rotational symmetry of the pair correlation function is broken 
from G = SO(2) to H ~- C 6. The coset space G / H  = S 0 ( 2 ) / C 6  is one-sixth of 
the circle and is parametrized by exp i60, where 0 is the next neighbor bond 
angle. The correlation function investigated is (exp i 6 { 0 ( r ) -  0(0)}). For the 
two-dimensional crystal one obtains: G = R x • R y, H =  Z~ X Zy,  G / H  
U(1)x X U(1)y. The order parameter fluctuates in a torus, parametrized by 
exp iQ �9 u, where Q is reciprocal lattice vector, and u is a displacement. The 
fluctuations are characterized by the Debye-Waller  correlation function 
(exp iQ.  {u(r) - u(0)}). 

In these examples, the correlation functions decrease algebraically as 
r - "  due to low-energy excitations (spin waves, phonons) and--since the first 
homotopy group is nontrivial---due to the presence of bound defect- 
antidefect pairs. The defects are vortices in the X Y  model, and screw 
dislocations with Burgers vector parallel to the chain in the system S S ( R D ) .  

This type of order is denoted topological ~26) or quasi-long-range. Order 
and fluctuations are labeled by a single Hermann symbol. When the defect 
pairs unbind, the correlation functions decay exponentially, giving rise to a 
new phase. One has to change the Hermann symbol with the onset of short- 
range order. Otherwise one would retreat to Hosemann's  concept, where one 
basic structure is fixed, and the mesomorphous phases are simulated by 
different types and degrees of fluctuations. 
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